

Distantial faithfulness in Yindjibarndi cluster reduction Juliet Stanton, NYU (stanton@nyu.edu) MorrisHalle@100, 9/8/23, MIT

I. Overview

- In Yindjibarndi (Wordick 1982), nasal cluster dissimilation (NCD) and lenition interact.
 Together they instantiate a chain shift:
- NCD results in /mp/ → [p]. Lenition results in /p/ → [w] or deletion (to [Ø]).
 [p]s derived through NCD do not lenite!

$$/mp/ \rightarrow [p]$$

 $/p/ \rightarrow [w], [\emptyset]$

This is easy to account for with ordered rules. It's harder with constraints.
This poster:

III. Proposal

• The idea:

- In an [mp] cluster, both consonants are linked to the same instance of [labial].

For this analysis, it makes sense to think of [labial] as a gesture that comes with a durational value. This value depends on what it's linked to.
Some evidence (Table 3), from Yindjibarndi audio in the UCLA Phonetics Lab Archive, suggests that [mp] is longer than [p], which is longer than [w].

Proposes an analysis that appeals to distantial faithfulness (after Kirchner 1996).
Shows that an alternative, in Stratal OT (e.g. Kiparsky 2000, Bermúdez-Otero 2018), has problems.

II. Data

- Lenition is common in Yindjibarndi; most stops lenite at least optionally in morpheme-initial, intervocalic position.
- Our interest is in the behavior of /p/ (Table 1; all data from Wordick 1982, conversion to IPA by me).
- /p/ deletes between two [u]s.
- /p/ lenites to [w] in all other intervocalic contexts.

Table 1: /p/ lenition and deletion

UR	SR	Gloss
/muvu+pa/	[muvu-wa]	'wintertime'
/waru+pura:/	[waru-ura:]	'twilight'
/nucu+piri/	[nucu-wiri]	'soft'
/muղa+pa/	[muղa-wa]	<pre>`close (emphatic)'</pre>
/maja+pura:/	[maja-wuraː]	'house'

Table 3: results of preliminary phonetic study

Segment(s)	Word	No. of tokens	Average duration
[mp]	[tampa]	3	117 ms.
	[tampi]	3	
[p]	[warapa]	3	97 ms.
	[cipi]	4	
[w]	[ciriwi]	3	60 ms.
	[wirwi]	3	

- The data suggest it is possible to reduce the duration of [labial] by one step (from [mp] to [p], or [p] to [w/Ø]), but not by two.
- More formally, we can think of this as a distantial faithfulness constraint:

IDENTDURATION[labial]: assign one * for each input labial gesture with duration x whose output correspondent has a duration of $x\pm 2$, where x is defined below. $[w/\emptyset] = 1, [p] = 2, [mp] = 3$

IDENTDURATION[labial] dominates the markedness constraint(s) responsible for /p/ lenition and deletion. We'll call this constraint *VpV. (See Stanton 2022 for more analysis.)
 Evidence that IDENTDURATION[labial] ≫ *VpV: /munti+mpa/ → [munti-pa] > *[munti-wa]

/ŋaţa+piriː/	[ŋaţa-wiriː]	'long-neck turtle'
/wirwi+pura:/	[wirwi-wura:]	'upwind'
/pari+pa/	[pari-wa]	'devil (emphatic)'
/wali+piti/	[wali-witi]	'lightning'

• In NCD, the nasal portions of /mp/ and /ŋk/ delete given the presence of a preceding nasal-stop cluster.

- Notice (Table 2): the [p]s resulting from NCD do not lenite.
- (We'll examine how /ŋk/ behaves later!)

Table 2: /m/ deletion due to NCD

UR	SR	Gloss
/munti+mpa/	[munti-pa]	'really'
/ <u>t</u> aŋka+mpa/	[t̪aŋka-pa]	'enough'
/ninku+mpuru+ŋu/	[ninku-puɾu-ŋu]	(no gloss)
/nula+mpa/	[nula-mpa]	'at this'
/para:+mpa/	[paraː-mpa]	'long time'
/nalija+mnucu+nu/	[nalija_mnucu_nu]	(no gloss)

IV. On a stratal alternative

A possible alternative: a stratal analysis. /p/ lenition precedes NCD.
/p/ lenition is probably word-level: it applies word-internally, and there are a few different sources of exceptions. (These criteria are based on Rubach 2008:470.)
NCD is probably phrase-level: virtually exceptionless, applies everywhere.
An immediate problem for this approach: NCD feeds /k/-lenition (Tables 4, 5).

Table 4: /k/ lenition and deletion

UR	SR	Gloss
/patu+kala:/	[patu-walaː]	'bird'
/malu+ku/	[malu-u]	'shade'
/maja+kaţa/	[maja-ata]	'house'
/warapa+ku/	[warapa-u]	'grass'
/ŋamaji+ku/	[ŋamaji-u]	'tobacco'

(janja inputu iju) [ijanja-mputu-iju] (no gioss)

• In sum: only underlying singleton /p/ can lenite. Derived [p] cannot!

References

- Bermúdez-Otero, Ricardo. 2018. Stratal Phonology. In S. J. Hannahs & Anna R. K. Bosch (eds.), *The Routledge handbook of phonological theory*, 100-134. Abingdon: Routledge.
- Bermúdez-Otero, Ricardo. 2019. *Alternation types: computation, storage, history*. Brugmann Fellow course, University of Leipzig, July 2019. Handouts available at: http://www.bermudez-otero.com/research.htm#Leipzig.
- Broś, Karolina. 2016. Stratum junctures and counterfeeding: Against the current formulation of cyclicity in Stratal OT. In C. Hammerly and B. Prickett (eds.), NELS 46: Proceedings of the Forty-Sixth Annual Meeting of the North East Linguistic Society, pp. 157-170. Amherst, MA: GLSA Publications.
 Browman, Catherine P. & Louis M. Goldstein. 1986. Towards an articulatory phonology. *Phonology Yearbook* 3. 219-252.
- Kirchner, Robert. 1996. Synchronic chain shifts in Optimality Theory. Linguistic Inquiry 27. 341-350.
- Kiparsky, Paul. 2000. Opacity and cyclicity. The Linguistic Review 17. 351-367.
- Rubach, Jerzy. 2008. An Overview of Lexical Phonology. Language and Linguistics Compass 2. 456-477.
- Stanton, Juliet. 2022. Allomorph selection precedes phonology: Evidence from Yindjibarndi. *Natural Language & Linguistic Theory* 40. 1317-1352. Wordick, F. J. F. 1982. *The Yindjibarndi language*. Canberra: the Linguistic Circle of Canberra.

Acknowledgements

My thanks to the Spring 2023 graduate Phonology II class at NYU; the Spring 2019, 2022, and 2023 undergraduate Phonological Analysis classes at NYU (who saw this dataset for their midterm and asked good questions about it); and Donca Steriade, for feedback on the ideas presented here.

/wanti+kala:/ [wanti-ala:] 'man'

Table 5: NCD feeds /k/ lenition and deletion

UR	SR	Gloss
/wuntu+ŋka/	[wuntu-wa]	river
/wanta+ŋka/	[wanta-a]	stick
/manci+ŋka/	[manci-a]	death adder
/miţka+ŋka/	[mirka-ŋka]	fork
/paŋŋa+ŋka/	[paŋŋa-ŋka]	bark
/malu+ŋka/	[malu-ŋka]	shade

/k/ lenition is probably word-level, for the same reasons as /p/ lenition.
If NCD occurs between two word-level processes, it must be word-level too.
This is an example of stratum-internal opacity (see Broś 2016, Bermúdez-Otero 2019).