I. Introduction

- In typical cyclic patterns (Chomsky, Katz, 1965), a Derivative (D) resembles its immediate constituent, or Local Base (B_i).
- Example: stress of solidified-ätion matches the stress of B_i solidify, not the stress of solid (solidification).
- We analyze deviations from the typical pattern: Ds that resemble related forms distinct from B_i, or Remote Bases (B_Rs).
- Example: stress in humid (B_i humid) matches stress of the B_i, not stress of humid (humidify).

II. The proposal, as applied to English

- Analysis of Corr B_i -violating patterns like that of humidify requires three interacting constraint families.
 - Base-Derivative (BD) Faithfulness constraints: they require a D to resemble its B (Benoit 1997; others).
 - Accentual Markedness constraints, including the two below: they disprefer certain stress patterns.
 - *Lapse: assign a * for each sequence of two consecutive stressless syllables.
 - *Clash: assign a * for each sequence of two consecutive stressed syllables. (See Prince 1983, Gordon 2002 on foot-free approaches to stress.)

- Base preference constraints: they require D to correspond to a certain kind of B, defined in morpho-syntactic terms.
 - In the present case, this is the B_i.
 - CORR B_i: assign a * if a D stands in correspondence with some Base ≠ B_i.

- Simplifying, we argue that the following ranking holds within the English Latinate lexicon:

 BD Faith >> Accentual Markedness >> Base Preference

III. Broader evidence

- **Prediction**: there should be entire classes of Ds where satisfaction of M correlates with the presence of a better B_R.
- To check this, we extract derivatives from the OED using all Latinate suffixes listed by Marchand (1969). For each resulting derivative, we recorded the following information. Two case studies below illustrate our analysis’s success.
 - The D itself, B_i possible B_R, spelling, IPA, stress, OED frequency bin
 - Stress change between B_i and D’s stem; which M constraint is satisfied in D by the change.

<table>
<thead>
<tr>
<th>Data: Better B_R</th>
<th>No Better B_R</th>
<th>CLASH satisfied</th>
<th>No effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better B_R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *18 Ds that should violate *Lapse if faithful to the B_i.
- Relevant –jfs are trochee-final (e.g. rigid, humaid, tutor).
- \(\text{Lapse} \rightarrow \text{ify} \) Ds with a better B_R more likely to resolve *Lapse \(\rightarrow \text{ify} \).

- *CLASH satisfied

<table>
<thead>
<tr>
<th>Data: Better B_R</th>
<th>No Better B_R</th>
<th>CLASH satisfied</th>
<th>No effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better B_R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Relevant –ee bases are iamb-final (e.g. provokie, submit).
- Ds with a better B_R more likely to resolve *CLASH \(\rightarrow \text{ee} \).

- Beyond these, evidence for B_Rs from: \(\text{able, -ary, -ory, -ive, -ician, -ivity, -icly, -ism, -ite, -oid, root compounds.} \)
- Other Latinate affixes: data is sparse, or there are strict conditions on stress placement requiring shift in all cases.

IV. Against a frequency-based alternative

- \(\text{– D frequency}: \) a frequent form might optimize its stress regardless of its B’s stress.
- \(\text{– Relative frequency of B_i and D:} \) the more frequent the B_i relative to the D, the more likely the D is to resemble it.
- \(\text{– Frequency of B_i and B_R:} \) if some B_R is more frequent than the B_i, the D more likely to resemble B_R.

- Statistical evidence from nine suffix types shows that the above factors do not subtype the effect of a better B_R.

- **Data**: wordlists from nine suffix types, including only those Ds that would violate some M constraint if fully faithful to their B_Ls. (Example: we considered expellee with B_i expel, but not surrenderre with B_i surrender.)

- **Models**: logistic regressions; dependent variable = does the D matches its B_R.
- Predictor: if a suffix is present, \(\text{if} \) the D has a B_R whose stress is optimizing, \(\text{assign a } 1 \), else \(\text{assign a } 0 \).
- Predictor: if the D has a B_R more frequent than the B_i, \(\text{assign a } 1 \), else \(\text{assign a } 0 \).
- FreqD: Frequency of the D; value of 0-8, from OED’s frequency bins.
- FreqB_R: Frequency of the D subtracted from frequency of the B_L; from OED’s frequency bins.

- **Result**: Better B_R is always significant. Other predictors do not have consistent effects.