Allomorph selection precedes phonology: evidence from Yindjibarndi*

Juliet Stanton, NYU • 27mfm • May 23, 2019

1 Introduction

- **Phonologically conditioned suppletive allomorphy (PCSA)** describes cases of suppletive allomorphy where the distribution of allomorphs is determined by phonological considerations. (Carstairs 1988; term from Paster 2006).
- PCSA can be optimizing, as is true for the Korean nominative suffix (1).

1)	Allomorphy in the Korean nominative suffix (Embic			Embick 2010:7)	
		Allomorph	Environment	Example	Gloss
	a.	-i	/C_	pap-i	'cooked rice'
	b.	-ka	/V_	ai-ka	'child'

PCSA can be apparently non-optimizing, as in the Haitian Creole definite suffix ((2), though see Bonet et al. 2007 on this case).

(2)	Allo	morphy in the	Haitian Creole	definite suff	fix (Embick 2010:7)
		Allomorph	Environment	Example	Gloss
	a.	-la	/C_	liv-la	'book'
	b.	-a	/V_	tu-a	'hole'

- **Question:** should the analysis of PCSA be integrated with the analysis of regular phonology? Numerous different answers in the literature:
- 1. *Yes:* the same constraints govern regular phonology and PCSA, so we should analyze them together (McCarthy & Prince 1993a,b; Raffelsiefen 2018, *a.o.*).
- 2. *No:* allomorph selection is a morphological process that precedes regular phonology (Paster 2006, Embick 2010, *a.o.*).
- 3. *It depends:* the analysis of optimizing cases of PCSA should be integrated with the analysis of regular phonology (Bonet et al. 2007, Smith 2015, *a.o.*).
- For a given data set, phonological and morphological analyses are usually both possible; arguments for one over the other hinge on which is more desirable.
- This talk: a case of PCSA in Yindjibarndi (Pama-Nyungan, Wordick 1982) that argues for 2, on the grounds that an integrated analysis is likely unworkable.

Roadmap and main points

- *Empirical point:* for common nouns, the form of Yindjibarndi's locative suffix depends on phonological information.
- Two suppletive allomorphs, /A/ and /B/, whose distribution is phonologically determined (by stem mora count, identity of final segment).
- Suppletive allomorphs have predictable allomorphs (so $/A/ \rightarrow [A', A'']$ and $B \rightarrow [B', B'']$, whose distribution is governed by regular phonology.
- *Theoretical point:* though both reference phonological factors, suppletion and regular phonology reside in different components of the grammar.
 - The proposed analysis, in sketch form:
 - > Morphology determines the distribution of /A/ and /B/.
 - > Phonology governs distribution of [A', A''] and (separately) [B', B''].
- *The argument:* an analysis that integrates suppletion and regular phonology predicts that suppletion should repair more phonotactic problems than it does. Rankings for suppletive and non-suppletive allomorphy are inconsistent.

2 Data and proposed analysis

- The form of Yindjibarndi's locative case marker is determined by semantic and phonological information. (These generalizations from Wordick.)
- *Semantic information:* noun class, of which Yindjibarndi has five. Each class takes a distinct set of locative allomorphs.¹
- *Phonological information:* the distribution of the common nouns' allomorphs ([-ŋka], [-wa], [-a], [-la], [-ta], [-ca]) is phonologically predictable.
- In this talk I will focus only on the phonologically conditioned aspect of locative allomorphy. The distribution of the common nouns' allomorphs is in Table 1.

^{*}I am grateful to A. Albright, M. Gouskova, C. O'Brien, and the LSA 2019 audience for feedback.

¹Proper nouns take /-la/, common nouns take /-la/ or /-ŋka/, "retroflex" nouns take /-ta/, directional nouns that decline like "north" take /-t/, and directional nouns that decline like "south" take /-ji/.

Seg. type	μ	NC?	Seg.	Morph	Example (all -LOC)
		No		[-ŋka]	[jura- ŋka] 'day' (p. 149)
V	2μ		[i a]	[]	[manci- a] 'death adder' (p. 33)
v		Yes	[1 a]	[-a]	[wanta-a] 'stick' (p. 33)
			[u]	[-wa]	[wuntu-wa] 'river' (p. 33)
	3μ			[-la]	[lo:pu-la] 'Friday' (p. 237)
			[n]	[-ta]	[majtan-ta] 'my gum tree' (p. 22)
			[η]	[-ta]	[karwan- t a] 'summer' (p. 210)
			[ɲ]	[-ca]	[witan-ca] 'path' (p. 247)
С					[kuntat-a] 'daughter' (p. 23)
			[t t c r] [-a]	r .1	[turut-a] 'prescribed' (p. 23)
				[-a]	[kaŋkac-a] 'loose' (p. 23)
				[matar-a] 'red ochre' (p. 23)	

• Four phonological factors determine the distribution of allomorphs.²

- 1. [±syllabic] value of stem's final segment ("Seg. type")
 - Different sets of allomorphs appear on V-final and C-final stems.
 - For example: [-ŋka] appears with V-final stems, but never C-final stems.
- 2. Length of stem, in terms of moras (" μ ")
 - For V-final stems, the allomorph that appears depends on length.
 - [-la] appears with 3μ stems; other allomorphs appear with shorter ones.
- 3. Whether or not the stem contains a nasal-stop cluster ("NC?")
 - For 2μ stems, allomorph depends on presence of NC in stem.
 - Allomorph is [-ŋka] if no NC is present, [-wa] or [-a] if one is.
- 4. Identity of final segment ("Seg.")
 - Identity of final segment conditions remaining differences in allomorphs.
 - For example: after N-final stems, there appears to be place assimilation.
- This looks like a lot of variation, but most can be attributed to regular phonology.
- If we assume (with Wordick p. 56) that two suppletive allomorphs /-ŋka/ and /-la/ underlie the variation in Table 1, the allomorphs are easy to derive.
 - /-ŋka/ has predictable allomorphs [-ŋka], [-wa], [-a] (unshaded rows in Tab. 1).
 - /-la/ has predictable allomorphs [-la], [-ta], [-ta], [-ca], [-a] (shaded rows).

- For /-ŋka/, allomorph that surfaces depends on the stem's segmental content.
- When /-ŋka/ doesn't attach to an NC-containing stem, it appears normally (3).
 - (3) Suffixation of /-ŋka/ to V-final stems

a.	/malu+ŋka/	→ [malu-ŋka]	'shade-LOC' (p. 236)
b.	/maṟa+ŋka/	→ [maṟa-ŋka]	'hand-LOC' (p. 230)
c.	/jura+ŋka/	→ [jura-ŋka]	'day-LOC' (p. 149)

- When /-ŋka/ attaches to an NC-containing stem, it appears as [(w)a] (4).
- (4) Suffixation of /-ŋka/ to NC-containing stems

a.	/wuntu+ŋka/	→ [wuntu-wa]	'river-LOC' (p. 33)
b.	/wanţa+ŋka/	→ [waղta-a]	'stick-LOC' (p. 33)
c.	/manci+ŋka/	→ [mapci-a]	'death adder-LOC' (p. 33)

- These alternations arise from the interaction of two different processes, both of which are entirely general in the language.
 - Yindjibarndi has nasal cluster dissimilation (NCD, term from McConvell 1988): in a sequence of two NCs, the second N is deleted (Wordick p. 33).³
 - NCD affects affixes (compare (5a-b, c-d)) and is a static restriction on roots.
 - (5) Nasal cluster dissimilation affects topicalization clitic /mpa/

a.	/munti+mpa/	→ [munti-pa]	'really-TOP' (p. 34)
b.	/taŋka+mpa/	→ [taŋka-pa]	'enough-TOP' (p. 34)
c.	/nula+mpa/	→ [nula-mpa]	'at this-TOP' (p. 240)
d.	/para:+mpa/	→ [paraː-mpa]	'long time-TOP' (p. 273

- Intervocalic /k/s are lenited to [w] between [u] and [a], and are deleted in all other intervocalic contexts (Wordick pp. 28, 32).
 - (6) Lenition and deletion of intervocalic $/k/s^4$

a.	/patu+kala:/	→ [paţu-wa[aː]	'feather-having' (p. 28)
b.	/malu+ku/	→ [malu-u]	'shade-OBJ' (p. 208)
c.	/maja+kaţa/	→ [maja-aţa]	'house-DIR.ALL' (p. 30)
d.	/warapa+ku/	→ [warapa-u]	'grass-OBJ' (p. 70)
e.	/ŋamaji+ku/	→ [ŋamaji-u]	'tobacco-OBJ' (p. 188)
f.	/mani+kala:/	→ [mani-ala:]	'mark-having' (p. 304)

 $^{^{3}}$ With a couple of small caveats. First, NCD only occurs if the second NC is a homorganic labial or velar cluster ([mp] or [ŋk]). Second, it is likely that NCD only occurs when the NCs are separated by vowels or glides: a [+consonantal] segment likely blocks NCD. See the appendix and Stanton (2019) for more details on and analysis of this case.

 $^{^2 \}mathrm{The}$ instrumental suffix behaves identically; the only difference is that its allomorphs end in /u/.

⁴Yindjibarndi has no /ki/-initial suffixes, so there is no data on underlying /uki/, /aki/, and /iki/.

- The alternations in the locative can be straightforwardly modeled as a feeding interaction between NCD and lenition/deletion ((7), as noted by Wordick p. 33).
- (7) /-ŋka/ allomorphy results from NCD and lenition
 - a. NCD results in the loss of the suffixal [ŋ].
 - (i) /wuntu-ŋka/ \rightarrow wuntu-ka
 - (ii) /wanta-ŋka/ \rightarrow wanta-ka
 - (iii) /manci-ŋka/ → manci-ka
 - b. Newly intervocalic [k] is lenited in u_a and deleted elsewhere
 - (i) wuntu-ka \rightarrow [wuntu-wa]
 - (ii) wanta-ka \rightarrow [wanta-a]
 - (iii) mapci-ka \rightarrow [mapci-a]
- For an analysis, I assume (8–12). (This analysis is relevant to later discussion.)
 - (8) *[+syll][DORS, -son][+syll] (*VkV):
 A * for each intervocalic dorsal obstruent.
 - (9) *[-back, +syll][DORS, -cons][+syll] (*{i,a}wV):
 A * for each [w] preceded by [i] or [a] and followed by another vowel.
 - (10) ***NC...NC**: A * for each pair of NCs.
 - (11) MAX: A * for each input segment that lacks an output correspondent.
 - (12) **IDENT[±cont]:** A * for each [α cont] input seg. whose output corr. is [- α cont].
 - The ranking necessary to generate NCD and lenition is in (13).
 - (13) Summary of NCD analysis

- Illustration of ranking arguments, with tableaux:
 - 1. *NC...NC \gg MAX: /wuntu+ŋka/ \rightarrow [wuntu-wa] > *[wuntu-ŋka]

	/wuntu+ŋka/	*NCNC	MAX
(14)	a. [wuntu-ŋka]	*!	
	☞ b. [wuntu-wa]		*

2. MAX \gg IDENT[±cont]: /wuntu+ŋka/ \rightarrow [wuntu-wa] > *[wuntu-a]

	/wuntu+ŋka/	MAX	IDENT[±cont]
(15)	🔊 a. [wuntu-wa]		*
	b. [wuntu-a]	*!	

3. $*{i,a}wV \gg MAX$: /mapci+ŋka/ \rightarrow [mapci-a] > *[mapci-wa]

	/maɲci+ŋka/	*{i,a}wV	MAX
(16)	a. [manci-wa]	*!	
	☞ b. [maŋci-a]		*

4. *VkV \gg MAX: /mapci+ŋka/ \rightarrow [mapci-a] > *[mapci-ka]

	/maɲci+ŋka/	*VkV	MAX
7)	a. [manci-ka]	*!	
	🖙 b. [maŋci-a]		*

- For /-la/, the allomorph that surfaces depends on the stem's final segment.
 - When /-la/ is suffixed to a vowel-final stem, it appears as expected.
 - (18) Suffixation of /-la/ to vowel-final stems

(1)

- a. /lo:pu+la/ \rightarrow [lo:pu-la] 'friday-LOC' (p. 237) b. /parkara+la/ \rightarrow [parkara-la] 'plain-LOC' (p. 210)
- When /-la/ is added to a C-final stem, either modification or deletion is possible.
- > When /-la/ is added to a nasal-final stem, /l/ hardens and place-assimilates.
 - (19) N-final stems: /l/ hardening and place assimilation

a.	/karwaղ+la/	→ [karwaղ-ta]	'summer-LOC' (p. 210)
b.	/majtan+la/	→ [majtan-ta]	'my gum tree-LOC' (p. 22)
c.	/witan+la/	→ [witap-ca]	'path-LOC' (p. 247)

- > When /-la/ is added to a stem ending in a stop or a tap, /l/ deletes.
 - (20) Other C-final stems: /l/ deletion

a.	/kuntat+la/	→ [kuղţat-a]	'daughter-LOC' (p. 23)
b.	/t̪urut+la/	→ [t̪urut-a]	'prescribed-LOC' (p. 23)
c.	/kaŋkac+la/	→ [kaŋkac-a]	'loose-LOC' (p. 23)
d.	/matar+la/	→ [maţar-a]	'red ochre-LOC' (p. 23)

• These alternations aren't predictable from regular phonology, but the generalizations on clusters that they respect are. For a full analysis, see the appendix; some generalizations (drawn from Wordick's pp. 14-16 and lexicon) are below.⁵

 $^{^5}Note$ that the final consonants in Yindjibarndi are [n η μ t t c r], so the examples below are exhaustive.

- *Why harden after a nasal?* Laterals are never the second member of clusters (21), so some modification is necessary to avoid an illicit cluster.
 - (21) Possible Yindjibarndi cluster types

			C_2				
		Stop	Nasal	Lateral	Glide		
	Stop	\checkmark					
C.	Nasal	\checkmark	\checkmark				
CI	Lateral	\checkmark					
	Glide	\checkmark	(√)		(√)		

- *Why place-assimilate after a nasal?* While heterorganic NC clusters are permitted, coronal NC clusters (in gray) typically agree in minor place (22).
 - (22) NC clusters in Yindjibarndi (counts from Wordick's lexicon)

- *Why delete after a stop?* Other options aren't great: stops must be followed by stops (21); heterorganic coronal CCs and geminates are dispreferred (23).
 - (23) CC clusters in Yindjibarndi (counts from Wordick's lexicon)

- Why delete after /t/? Coronal consonants never follow /t/.
- The full details of how this analysis works are not relevant for what follows.
- The final piece of the analysis is to analyze the distribution of /-ŋka/ and /-la/.
 - Basis for treating this as suppletion: no regular alternations between [l], [ŋk].
 - How to regulate which suppletive allomorph occurs in which context?

- My proposal: the distribution of suppletive allomorphs is morphologically determined, perhaps by Vocabulary Insertion rules ((24), Halle & Marantz 1993).
 - (24) Vocabulary insertion rules for locative suffix on common nouns
 - a. [LOC] \leftrightarrow /-ŋka/ / C₀VC₀V_ , C₀V:
 - b. $[LOC] \leftrightarrow /-la/$
 - > Exact formalization doesn't matter here: the distribution could be captured with subcategorization frames (à la Paster 2006), or in some other way.
 - $\gg\,$ What matters: phonology does not get to choose between /-la/ and /-ŋka/.
- In sum, I assume the following analysis of the Yindjibarndi locative:
- There are two suppletive allomorphs, /-la/ and /-ŋka/, whose distribution is phonologically conditioned but governed by the morphology.
- Each gives rise to a set of allomorphs (/-la/ → [-la], [-ta], [-ta], [-ca]. [-a]; /-ŋka/ → [-ŋka], [-wa], [-a]) whose distribution is governed by regular phonology.
- Few formal details (constraint definitions, morphological analysis, etc.) matter; what's important is the separation of suppletive and non-suppletive allomorphy.

3 An alternative: all allomorphy is phonology

- A potential criticism of the morphological analysis of suppletion proposed in (24): it misses generalizations that link suppletive and non-suppletive allomorphy.
- All allomorphy, suppletive or otherwise, is phonologically conditioned.
- Furthermore, the same phonological generalizations are relevant to suppletive and non-suppletive allomorphy.
 - > For shorter (2μ) stems, [±syllabic] value of the final segment determines whether the allomorph is /-ŋka/ or /-la/.
 - For longer stems, [±syllabic] value of the final segment determines whether /-la/ surfaces as [-la] or something else ([-ta], [-ta], etc.).
- So why not analyze both types of allomorphy together, in the phonology?
- This section: an integrated analysis of suppletion and phonology, and why it fails.
- One way to analyze the aspect of suppletion that depends on mora count:
- There is a general preference to use the allomorph /ŋka/ (25); this is enforced by PRIORITY ((26); Mascaró 2007:726).
 - (25) Preferred ordering of allomorphs $LOC = \{/\eta ka/1 > /la/2\}$
 - (26) PRIORITY: Respect lexical priority (ordering) of allomorphs.

- Why is /-nka/ not used for longer stems? Potentially: a language-wide dispreference for clusters that appear later, in longer words (Figure 1^6).
- > Figure 1: frequencies of clusters by position, in 2-4 μ words (90% of lexicon).
- > Word length matters: clusters more frequent in 2μ words (ampa > ampala).
- > Position matters: in 3μ and 4μ words, clusters are more frequent after 1μ than after 2μ s (ampala > alampa); in 4μ words, clusters more frequent after 2μ s than after 3μ s (alampata > alatampa).
- > Suggests that attaching /-la/ to 3μ and longer stems may be a way to avoid placing a cluster in a position where it would be dispreferred.
- I formalize this dispreference as (27), in line with the trends in Figure 1.
 - (27)* μ_2 CC μ : assign a * for each cluster with at least two preceding moras.
- To take effect, $*\mu_2 CC\mu$ must dominate PRIORITY.
- The aspect of suppletion that depends on the identity of the **stem-final segment** can also be linked to more general facts about Yindjibarndi phonotactics.
- Triconsonantal clusters are unattested; this motivates the constraint in (28).
 - (28)*CCC: a * for each sequence of three consonants.
- If /-nka/ attached to C-final /maitan/, the result would be illicit *[majtan-nka]. Using /-la/ instead violates PRIORITY, but avoids a *CCC violation.

- The fact that suppletion is the preferred repair to *CCC and μ_2 CC μ shows us that PRIORITY is low-ranked; it's dominated, for example, by MAX (11).
- Putting it all together: this case of PCSA instantiates the ranking in (29).
- (29)*CCC, $*\mu_2$ CC μ , MAX \gg Priority
- For longer stems, using /-la/ avoids violation of $\mu_2 CC\mu$ (30a) or MAX (30b).
- (30)Allomorph used for longer stems is /-la/

/lo:pu+LOC/	*CCC, *µ ₂ CCµ	DRIODITY
$LOC = \{/\eta ka/1 > /la/2\}$	MAX	PRIORITY
a. [loːpu-ŋka ₁]	* $\mu_2 CC \mu$!	
b. [loːpu-wa ₁]	*MAX!	
rs c. [loːpu-la ₂]		*

• For short C-final stems, using /-la/ avoids violation of *CCC (31a) or MAX (31b).⁷

Anomorph used for shorter, C-final stems is 7-fa/					
/majtan+LOC/	*CCC, * μ_2 CC μ	DRIODITY			
$LOC = \{/\eta ka/1 > /la/2\}$	MAX	I KIOKII I			
a. [majtan-ŋka ₁]	*ccc!				
b. [majtan-ka ₁]	*MAX!				
☞ c. [majtan-ta ₂]		*			

- For short V-final stems, /ŋka/ surfaces due to PRIORITY.
 - (32)Allomorph used for shorter. V-final stems is /-nka/

/malu+LOC/ LOC = $\{/\eta ka/1 > /la/2\}$	*CCC, *µ2CCµ MAX	Priority
🖙 a. [malu-ŋka ₁]		
b. [malu-la ₂]		*!

• In sum: suppletion can be analyzed as the interaction of phonological constraints with an allomorph preference constraint.

(31)

⁶Plot made in R's ggplot2 (Wickham 2016), data from Wordick's lexicon.

⁷In light of the discussion that follows, it's worth asking whether or not a ranking like $M \gg PRIORITY$ \gg MAX could also account for (30–31), where M is a markedness constraint that rules out (30b) and (31b). For (30b), this could be a constraint stipulating that /-ŋka/ and its allomorphs may not be attached to trimoraic or longer forms. For (31b), an equivalent move is likely not feasible. One could appeal to a restriction on heterorganic NCs, but NC clusters that disagree in major place are attested within roots ([kanka] 'height, top' (p. 288)) and across other stem-suffix boundaries ([pin-ku] 'you-OBJ' (p. 219); [purkuŋ-ku] 'close smoke-OBJ' (p. 215)). In addition, such an analysis would not be able to rule out a further candidate, [majtan-a1], which poses no obvious phonotactic problem.

- **Problem:** the ranking $MAX \gg PRIORITY$ makes incorrect predictions when we try to integrate it with the analysis of NCD.
- NCD characterized by the ranking $*NC...NC \gg MAX$.
- Adding MAX \gg PRIORITY predicts suppletion rather than NCD (33).
 - (33) MAX \gg PRIORITY makes wrong prediction for /wanta+ŋka/

/wanta+LOC/ LOC = $\{/\eta ka/1 > /la/2\}$	*NCNC	MAX	Priority
a. [waղťa-ŋka ₁]	*!		
🔅 b. [wanţa-a]		*!*	
č. [waηţa-la ₂]			*

- Fixing this problem would require us to rank PRIORITY over MAX.

Problem for the integrated analysis

- Suppletive allomorphy shows us that it is better to use the "wrong" allomorph than it is to delete a consonant (in the service of *CCC, $*\mu_2$ CC μ).
 - (34) *CCC, * μ_2 CC μ , MAX >> PRIORITY
- Non-suppletive allomorphy shows us that it is better to delete a consonant than it is to use the "wrong" allomorph (in the service of *NC...NC).
 - (35) *NC...NC, **PRIORITY** \gg **MAX**
- This is a ranking paradox. There is no solution that I am aware of.
- Why does the integrated analysis run into this problem?
 - If we allow the grammar to treat suppletion as a potential repair that can be prioritized over other repairs, like deletion, we expect this hierarchy to hold in all cases where both repairs are in principle available.
 - This doesn't happen; suppletion solves some problems, deletion others.
- The proposed analysis avoids this problem by depriving phonology of the option to use suppletion as a repair to phonotactic problems.

4 Summary

• **Claim**: PCSA in the Yindjibarndi locative suffix should be analyzed in the morphology, *even though the allomorph distribution appears to be optimizing*.

- **Evidence**: an integrated analysis that relates suppletion to broader phonotactic patterns is not just undesirable, but likely unworkable.
- **Broader contribution**: provides support for analyses of suppletion as a morphological operation that precedes phonology.

References

- Bonet, Eulàlia, Maria-Rosa Lloret & Joan Mascaró (2007). Allomorph selection and lexical preferences: Two case studies. *Lingua* 117:1903-927.
- Carstairs, Andrew (1988). Some implications of phonologically conditioned suppletion. Booij, Geert & Jaap van Marle (eds.), *Yearbook of morphology 1988*, Foris, Dordrecht, 67–94.
- Embick, David (2010). *Localism and globalism in morphology and phonology*. MIT Press, Cambridge, MA.
- Halle, Morris & Alec Marantz (1993). Distributed Morphology and the Pieces of Inflection. Hale, Kenneth & Samuel Jay Keyser (eds.), *The View from Building 20. Essays in Honor* of Sylvain Bromberger, MIT Press, 111–176.
- Hamilton, Philip James (1995). *Constraints and markedness in the phonotactics of Australian Aboriginal languages*. Ph.D. thesis, University of Toronto, Toronto.
- Mascaró, Joan (2007). External allomorphy and lexical representation. *Linguistic Inquiry* 38, 715–735.
- McCarthy, John J. (2010). An introduction to harmonic serialism. *Language and Linguistics Compass* 1001–1018.
- McCarthy, John J. & Alan Prince (1993a). Generalized alignment. Booij, Geert & Jaap van Marle (eds.), *Yearbook of Morphology 1993*, Springer, Dordrecht, 79–153.
- McCarthy, John J. & Alan Prince (1993b). Prosodic Morphology i: Constraint interaction and satisfaction. Ms., University of Massachusetts, Amherst and Rutgers University.
- McConvell, Patrick (1988). Nasal cluster dissimilation and constraints on phonological variables in Gurundji and related languages. *Aboriginal linguistics* 1, 135–165.
- Orgun, Cemil Orhan & Ronald L. Sprouse (1999). From MParse to Control: deriving ungrammaticality. *Phonology* 16, 191–224.
- Paster, Mary (2006). *Phonological conditions on affixation*. Ph.D. thesis, University of California, Berkeley, CA.
- Raffelsiefen, Renate (2018). Systematic leveling and what to make of it. Talk presented at the 26th Manchester Phonology Meeting.
- Smith, Brian W. (2015). *Phonologically-conditioned allomorphy and UR constraints*. Ph.D. thesis, University of Massachusetts, Amherst, MA.
- Stanton, Juliet (2019). Constraints on contrast drive nasal cluster dissimilation. Ms., NYU.
- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Spring-Verlag, New York.
- Wolf, Matthew Adam (2008). Optimal interleaving: Serial phonology-morphology interaction in a constraint-based model. Ph.D. thesis, University of Massachusetts, Amherst, MA.
- Wordick, Frank (1982). *The Yindjibarndi Language*. Australian National University, Canberra.

Appendix

Analysis of /l/-hardening and place assimilation

- There are several suffixes in Yindjibarndi that end with /l/. When these suffixes are attached to a C-final word, the /l/ undergoes changes.
 - If the C-final word ends with a nasal, /l/ hardens and place-assimilates.
 - (1) /l/ hardening and place assimilation

a.	/karwaղ+la/	→ [karwaղ-ţa]	'summer-LOC'
b.	/majtan+la/	→ [majtan-ta]	'my gum tree-LOC
c.	/witan+la/	→ [witap-ca]	'path-LOC'

- If the C-final word ends with a stop or /r/, the /l/ deletes.
 - (2) /l/ deletion

a.	/kuntat+la/	→ [kuղťat-a]	'daughter-LOC'
b.	/t̪urut+la/	→ [t̪uɾut̥-a]	'prescribed-LOC
c.	/kaŋkac+la/	→ [kaŋkac-a]	'loose-LOC'
d.	/matar+la/	→ [maţar-a]	'red ochre-LOC'

- NB: the only licit word-final consonants in Yindjibarndi are [t t c n η p r]. (This means that the data provided above exhaust the possible clusters.)
- The fact that /l/ is modified in these clusters is linked to a general prohibition on laterals as C_2 in a cluster. We can express this as (3), abbreviated as *CL.
- (3) *[-syll][+cons, +son] (*CL): a * for each consonant-lateral cluster.
- The choice between hardening (and place assimilation) and deletion is governed by further constraints on cluster composition.
 - Hardening and place assimilation occur after nasals, in line with constraints on NC composition ((4); counts from Wordick's lexicon).
 - (4) Attestedness and frequency of different NC types

			-				• 1	
			C_2					
		p	ţ	t	l t	c	k	
	m	75						
	n		63					
C.	n	26		97		19	59	
C_1	η	11			132	5	26	
	ր	2				66	12	
	ŋ						141	

- A few observations from (4):
- > All homorganic NCs (in black) are attested.
- > Coronal-noncoronal clusters are generally licit, with the exception of nC.¹
- $\,\gg\,$ Coronal-coronal clusters that disagree in minor place are restricted.
- Constraints in (5–8) account for the restrictions on clusters. (All restrictions are independently attested in Australian languages; Hamilton 1995).
 - (5) *[+distrib][-distrib]: a * for each [+distrib] coronal (dental or palatal) followed by a [-distrib] coronal (alveolar or retroflex).
 - (6) *[α distrib, β ant][α distrib, $-\beta$ ant]: a * for each pair of consonants that agree for [±distrib] but disagree for [±ant].
 - (7) *[-distrib]//[+distrib, +ant]: a * for each dental consonant that follows a [-distrib] consonant.
 - (8) *[-cor, α place][β place]: a * for each labial or velar that precedes a consonant at a difference place of articulation.
- To save space in the analysis, I'll use a cover constraint, *BADCLUS, which assigns violations for each of (5–8).
- *CL and *BADCLUS force the /l/ to map to a non-liquid (due to low-ranked IDENT[±son]) that place-assimilates to the preceding nasal.
- I assume that IDENT[±ant] and IDENT[±distrib] are low-ranked but active.
- By contrast, I assume that IDENT[±cor] and MAX are high-ranked (the evidence for this: /l/ never maps to [p] or [k]; deletion does not occur).
- A couple of sample tableaux, to demonstrate how this analysis works:
- (9) $/n+l/ \rightarrow [n-t]$

¹It is possible that the distribution of dentals is less constrained than the lexicon suggests: Wordick's fn. 3, on p. 15, notes that when dental consonants follow another C the result seems somewhat 'funny'. It's not clear however exactly which of these clusters are attested, so my analysis follows the lexicon.

/η+	-l/ → [η-t]							
	/ղ+1/	*CR	*BADCLUS		IDENT[±son]	MAX	IDENT[±ant]	IDENT[±distrib]
	a. [η-1]	*!	*	1	r I	1		' I
	b. [η-t]		*!	I	*	I		L
03	§ c. [η-t]		1	1	*	1	*	1
	d. [η-k]		1	*!	*	I		I
	e. [ŋ]				I	*!		I

(10)

- Deletion of /l/ after a stop can be traced to a restriction on stop-stop clusters at the same place of articulation (11).
- (11) Attestedness and frequency of different CC types

- Why not map /l/ to something other than a stop? Because stop-sonorant clusters are unattested ((12); parentheses indicate marginal cluster types).²
 - (12) Possible types of clusters in Yindjibarndi

		~					
		C_2					
		Stop Nasal Lateral Glide					
C ₁	Stop	\checkmark					
	Nasal	\checkmark	\checkmark				
	Lateral	\checkmark					
	Glide	\checkmark	(√)		(√)		

• These patterns can be captured with the constraints in (13–14). (MAX is split into MAX[-lateral] and MAX[+lateral], to explain why the [l] preferentially deletes.)

- (13) *[-son, α place][-son, α place] (*TT): a * for each stop followed by another stop at the same major place.
- (14) *[-son][+son]: a * for each stop followed by a sonorant.
- IDENT[±cor] acts with (13–14) to prevent /l/ from mapping to any other segment. A sample tableau follows.

X[+lateral]

$$(15) \quad (t+l) \rightarrow [t-l] \qquad (21)$$

/t+l/	LL*	s-]*	IDE	MA	MA
a. [t-1]		*!	1	1	
b. [t-t]	*!	1		1	
c. [t-c]	*!	1	1	1	
d. [t-p]		1	· *!	1	
IS e. [t]		l	1	1	*
f. [1]		1	1	*!	

- This can't be the full story, though as is clear from (11), some heterorganic coronal-coronal clusters are possible, but the ranking in (15) rules them out.
- [tc] and [tc] are rare but attested (16); most involve the verbalizer /-cari/.
 - (16) Examples of coronal heterorganic stop-stop clusters
 - a. [mitcu] 'talon'
 - b. [parat-cari] 'get stuck'
 - c. [yi:mit-cari] 'get itchy'
 - d. [wirat-cari] 'feel like'
- One way to account for their existence would be to rank MAX[-lateral] and IDENT[place]/[-lateral] (17) over *TT: if /t+c/ is underlying, it must surface.
 - (17) IDENT[place]/[-lateral]: a * for each input [-lateral, α place] segment whose place specification is [β place].
- A full account of this requires these faithfulness constraints to be dominated in turn by (5–8), to ensure that not all heterorganic clusters surface.
- I don't provide tableaux or a worked-out analysis of this here, but (as far as I can tell) the necessary revisions do not jeopardize the analysis of /l/-alternations.

 $^{^2 \}rm With$ the two exceptions of [pu[utmu] 'before reaching the goal' and [wutli] 'Woodley King' (a name borrowed from English).

- Finally, we need to account for why /l/ deletes after /r/.
 - As is evident from (12), [l] (a lateral) cannot follow [r] (a glide). This follows from the general prohibition on laterals as C₂ (*CL).
 - There is also a dispreference for homorganic clusters where a glide is C1.
 - (18) Attestedness and frequency of glide-stop clusters

(19) Attestedness and frequency of glide-nasal clusters

(20) Attestedness and frequency of glide-glide clusters

- These patterns suggest the constraint in (21), abbreviated as *RT.
 - (21) *[-cons, -syll, α place][-syll, α place] (*RT): a glide may not be followed by another consonant at the same major place of articulation.
- *RT, with *CL and IDENT[±cor], predicts that /l/ should delete following /r/ (22): other possible repairs violate high-ranked constraints.

 $(22) \qquad /r+l/ \rightarrow [r]$

/r+1/	*CL	*RT	IDENT[±cor]	MAX[-lat]	MAX[+lat]
a. [r-l]	*!		1		
b. [r-t]		*!			
c. [r-c]		*!	1	1	
d. [r-p]			l	*!	
₽ e. [ſ]		ı I	ı I	 	*
f. [1]		I	*!	I	

- Again, this can't be the full story: [rc], [rp], and [rj] are rare but attested (23). The ranking in (22) would however rule them out.
 - (23) Examples of tap-palatal clusters

d.

- a. [cimpur-cimpur] 'speckled (like a crow's egg)'
- b. [pațarci] 'seagull'
- c. [pappar-puŋu] 'bird, airplane'
 - [kaŋkurja] 'forktail catfish'
- An analysis of these facts could appeal to MAX[-lateral] and IDENT[place]/[-lateral], to explain why these clusters are permitted to surface.
- The set of constraints that dominate MAX[-lateral] and IDENT[place]/[-lateral] would likely need to be more extensive than those in (5–8), as the set of permitted glide-initial clusters is more restricted.
- Again, I don't provide a worked-out analysis, but (as far as I could tell) the necessary revisions would not jeopardize the analysis of /l/-alternations.
- In sum: the ranking in Figure 1 accounts for the alternations when /l/ attaches to a C-final stem. Further constraints and rankings are necessary for a full analysis.

A serial analysis and its troubles

- An analysis where phonological and morphological operations are serially interleaved (à la Wolf 2008) can derive the locative facts, but has problems with others.
 - The analysis below is framed in Harmonic Serialism (McCarthy 2010).
- This differs from Wolf's proposal, but preserves the insight that morphological and phonological operations can be serially interleaved.

- This analysis makes the same assumption that /-ŋka/ is the preferred exponent of the locative for common nouns, and uses the constraints in (24–27).³
 - (24) *CCC: a * for each sequence of three adjacent consonants.
 - (25) *NC...NC: a * for each pair of NCs.
 - (26) PRIORITY: Respect lexical priority (ordering) of allomorphs.
 - (27) MAX: a * for each input C that lacks an output correspondent.
- For a serial analysis, we want to model the following order of operations:
 - Allomorph choice: [-ŋka] in the general case, [-la] in case a *CCC violation would result from attaching [-ŋka].
- Allomorphy for /-ngka/: [-ngka] generally, [-(w)a] in case a *NC...NC violation would result from realizing /-ŋka/ faithfully.
- The ranking that gives us this order of operations is below.
 - (28) $*CCC \gg PRIORITY \gg *NC...NC \gg MAX$

- Derivation of [majtan-tu] 'my gum tree-LOC'
- I assume morph insertion must happen, and that it must happen first.
- (This is equivalent to a claim that MAXMORPH is inviolable; I don't include this constraint or candidates that violate it in the tableaux that follow.)
- (29) Step 1: morph insertion

$majtan+LOC$ $LOC = {/\eta ka/_1 > /la/_2}$	*CCC	Priority	*NCNC	Max
I™ a. majtan-la ₂		*		
b. majtan-ŋka ₁	*!			

(30) Step 2: hardening of [1] to [t] (not shown)

• Derivation of [wuntu-wa] 'river-LOC'

(31) Step 1: morph insertion

	<u> </u>				
	wuntu+LOC LOC = $\{/\eta ka/1 > /la/2\}$	*CCC	Priority	*NCNC	Max
ĺ	a. wuntu-la ₂		*!		
	r≊ b. wuntu-ŋka ₁			*	

- (32)
 Step 2: resolution of *NCVNC violation

 wuntu-ŋka
 *CCC
 PRIORITY
 *NC...NC
 MAX

 a. wuntu-ŋka
 *!
 *!
 **

 Image b. wuntu-ka
 *
 **
 **
- (33) Step 3: lenition of [k] to [w] (not shown)
- But: /-mpa/, a topicalization clitic, poses problems for this analysis.
- · Bizarre lookahead with topicalization clitic /-mpa/
- Just as [-ŋka] alternates with [-(w)a], [-mpa] alternates with [-pa] as a function of the preceding environment.⁴
 - (34) Nasal deletion in [-mpa] (Wordick 1982:34,273)
 - a. /munti+mpa/ \rightarrow munti-pa 'really-TOP'
 - b. $/tankar+mpa/ \rightarrow tankar-pa$ 'enough-TOP'
 - c. cf. /para:+mpa/ \rightarrow para:-mpa 'long time-TOP'
- The data in (34) is easy to account for; I've taken out PRIORITY from the tableaux below, as it's no longer relevant.

³This analysis does not take into account the mora-counting aspect of allomorphy; its successes and failures are clear from the aspect of allomorphy that appeals to the stem-final consonant.

 $^{^{4}}$ The example in (b) demonstrates that NCD can occur through a single consonant. It's not clear from Wordick's description if this is just [r] or all single consonants.

(35) Step 1: morph insertion

T T T			
/t̪aŋkar+TOP TOP = /mpa/	*CCC	*NCNC	Max
🖙 a. t̪aŋkar-mpa	*	*	

(36) Step 2: resolution of *CCC and *NCVNC

taŋkar-mpa	*CCC	*NCNC	MAX
a. taŋkar-mpa	*!	*	
🖙 b. taŋkar-pa			*

- The problem: [-mpa] suffixation to C-final stems is not possible unless that stem is NCVC-final, i.e. unless NCD would apply and eliminate a C.
- Wordick (p. 34) is extremely clear about this. Apropos of (34b), he writes:

"The reader should understand that this is not simply a reduction of an impossible triconsonantal cluster to a disyllabic [sic] one: the topic clitic will just not fit on words ending in a consonant with no immediately preceding nasal plus stop cluster [...] Gilbert Bobby tells me that the only thing you can do in this case is to use the emphatic clitic in its place.⁵"

- I take Wordick's quote to mean that it's possible to delete a C in service of *NCVNC, but not *CCC.
 - > Parallel to facts for locative discussed in the main handout.
 - > The difference: clitic has no other allomorphs. If a *CCC violation would result, the word is impossible, and speakers resort to other strategies.
- Confirming with a hypothetical example that the current analysis fails:
 - (37) Step 1: morph insertion

maţar+TOP TOP = /mpa/	*CCC	*NCNC	MAX
🖙 a. maţar-mpa	*		

(38) Step 2: resolution of *CCC and *NCVNC

1			
matar-mpa	*CCC	*NC…NC	Max
a. matar-mpa	*!		
🔅 b. maţar-pa			*

- We can fix this by ranking MPARSE between *CCC and MAX.

(39) Step 1: morph insertion

maţar+TOP TOP = /mpa/	*CCC	MPARSE	Max
a. matar-mpa	*!		
r≊ b. ⊙		*	

- But this predicts that /thangkarr+TOP/ should lead to a null parse, too.
 - (40) Step 1: morph insertion

taŋkar+TOP TOP = /mpa/	*CCC	MPARSE	Max
a. taŋkar-mpa	*!		
¤≊ b. ⊙		*	

- I call this a 'bizarre lookahead' problem because it has the flavor of lookahead, but the actual problem is elsewhere.
 - > Culprit here is *CCC >> MAX; it predicts that Cs should be deletable in response to *CCC violations. Suggested by richness of the base.
 - > No way to account for the behavior of [-mpa] with this ranking in place.
- It's possible to save the serialist analysis, but it gets really complicated.
- Analysis necessarily involves 2 strata and a control component (à la Orgun & Sprouse 1999).
 - (41) Stratum 1: *CCC >> PRIORITY >> *NC...NC >> MAX Derives correct allomorphy patterns for case-marked forms
 - (42) Stratum 2 (Cliticized forms): *NC...NC >> MAX >> *CCC Derives nasal cluster dissimilation for cliticized forms. A contrast arises between forms like [taykar-pa], with NCD, and [matar-mpa], with a CCC cluster. But both are licit.
 - (43) Control component: *CCC Prohibits forms with an illegal CCC, like [matar-mpa], from surfacing.
- **In sum**: a successful analysis involves serialism, strata, and a control component. Maybe better to pursue an alternative, like the modular analysis for the locatives.
- Restrictions on topicalization morpheme can be captured with restrictions on the contexts where /-mpa/ can be inserted.
 - (44) Vocabulary insertion rule (Halle & Marantz 1993) for /-mpa/ [TOP] ↔ /-mpa/ / V_, NCVC_
- NCD then remains part of regular phonology, and does not play a role in determining whether or not /-mpa/ gets inserted.

⁵The emphatic clitic is /-pa/. How can we tell that it is really a different morpheme? Because the /p/ of emphatic /-pa/ lenites, but the /p/ of the topicalization /-mpa/ does not (compare /munti+mpa/ \rightarrow [munti-pa] 'truly-TOP' to /munti+pa/ \rightarrow [munti-wa] 'truly-EMP'). In rule-based terms, /p/-lenition counterfeeds NCD. I wasn't able to find examples of the emphatic after [r] to confirm that it lenites in that context too, but this is what's expected given Wordick's description of lenition.